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J.  Phys.: Condens. Matter 2 (1990) 9025-9040. Printed in the U K  

Phonon modes at the reconstructed surface of a cubic 
lattice 

V L Golo 
Department of Mathematics, Moscow University, Moscow 119899, USSR 

Received 1 March 1990 

Abstract. We consider the ('& X ~)R45"- recons t ruc t ion  on the (001) surface of a simple 
cubic lattice with interaction forces acting between nearest neighbours according to Hooke's 
law. Using Feynman's complex-time path integral we find the energy of the surface, which 
provides the usual T' law for specific heat. We come to the conclusion that the energy of 
zero point vibrations at the surface. which can be compared to the Casimir energy, could 
influence the phenomenon of reconstruction at low temperatures. 

1. Introduction 

The key point about the reconstruction is that the periodicities of the crystal's surface 
and bulk are coordinated. It should be noted that the topmost layer of atoms forming 
the reconstructed surface cannot be obtained by simply terminating the crystal's bulk 
lattice at a plane. In this paper, in accord with the classical Gibbs approach, we shall 
consider the topmost layers of the crystal's atoms forming its surface to be a separate 
system interacting with its bulk in such a way that there is a relation between their 
periodicities. 

In what follows we shall assume that the crystal and its surface are in thermal 
equilibrium with a reservoir at temperature 8, so that the canonical partition function 
of the whole reads 

Z = Tr(e-B"). 

Here Hi s  the Hamiltonian of the system comprised of the surface and the bulk, and 
8-I. 

partition function as the product 

= 

To separate thermal properties of the bulk and the surface we shall write the canonical 

z = Z,Zb 

where 2, is assigned to the surface and Zb to the bulk (see the discussion of this procedure 
by Dash 1975, ch IV). 

0953-8984/90/469025 + 16 $03.50 @ 1990 IOP Publishing Ltd 9025 
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Feynman's complex-time path integral provides a means of obtaining the fac- 
torization. Let us assume that the crystal's dynamics are described by a Lagrangian L ,  
then the canonical partition function is given by the path integral (see Feynman 1972) 

where S is the complex-time action, x are displacements of atoms from equilibrium 
positions. and 

-I/% 

S = L(x, i )  dt. (3) 

Following the idea of the paper by Schwinger (1961) on Brownian motion of quantum 
oscillators, we propose to study thermodynamical properties of the surface lattice by 
constructing, within the framework of the harmonic approximation and using path- 
integral technique, an effective Lagrangian that gives the right description of the surface 
dynamics by accommodating the influence of the bulk on the surface with the help of a 
Green function. The total Lagrangian of the system is to be resolved as follows: 

L = Liff + Liff. (4) 

Here Lgff is an effective Lagrangian for the bulk. From equations (2-4) we infer that the 
factorization (1) is to take place. 

In studying reconstructed surfaces it  is helpful to employ model considerations to 
obtain results in closed analytic form. In this paper we use the Montroll-Potts model 
(see Wallis 1959) in which atomic sites in the bulk form a simple cubic lattice, each atom 
interacting with its nearest neighbours according to Hooke's law. The model is a crude 
picture of real crystal; for example, it is not rotationally invariant and consequently its 
predictions may disagree with the theory of elasticity (see Maradudin and Wallis 1966). 
Nonetheless, its mathematical simplicity provides a means to carry out a fairly complete 
analysis and, as is generally accepted, it permits one to obtain qualitative information 
concerning the crystal's dynamics for a wide range of its determining factors, i.e. masses 
of atoms and force constants. 

The Montroll-Potts model has enough structure to mimic reconstruction. In this 
paper we assume that the crystalline lattice occupies a very large volume in the half space 
determined by the requirement z 3 0, and the (q? x ~)R45"-reconstruct ion (see 
figures 1, 2) takes place at the (001) face corresponding to z = 0 plane in space. Free 
boundary conditions are imposed on the reconstructed surface. We do not intend to 
study edge or angle modes of the crystal's vibrations. and in accord with the theorem by 
Ledermann (1944) we may neglect specifying boundary conditions at faces different 
from the z = 0 one (see section 3). 

We take such a spatial scale that the distance between two nearest neighbours in the 
bulk is equal to one, so that equilibrium positions of atoms in the bulk are given by 
integer vectors of the form 

i = (il , i * , i j )  j l , j 2  = 0 ,  21, 5 2 , .  . . j ,  = 1 , 2 , .  . .. 

The monoatomic layer of the reconstructed surface is formed by atoms of mass M ;  their 
equilibrium positions are: 

l ,=i+m,-mz  12=m, +m2 13=0 m ,  ,m2=0,+1,+2 , . .  . .  ( 5 )  
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Figure 1. Simple cubic lattice with the (\IT x 
%5)R45" reconstruction on the (001) face. Thick 
lines indicate interaction between surface atoms. 
Thin lines indicate interaction with atoms in the 
bulk. 

Figure 2. Top view of the reconstructed surface. 

We assume that atoms interact according to Hooke's law-each atom in the bulk with 
its six nearest neighbours, and each atom at the surface with two nearest neighbours in 
the first layer of the bulk and four nearest neighbours at the surface-so that, on the 
whole, each atom of the lattice has six bonds (see figures 1 and 2). The ratio M/m, where 
m is the mass of a bulk atom, is to a certain extent a characteristic of interaction between 
surface and bulk; for heavy surface atoms, M + m ,  we consider it to be small, for 
M < m ,  we consider it large. 

We may consider the surface lattice to be the square centred one; in this case both 
lattices have commensurate periods, 1 and 2. As the surface lattice now has two atoms 
per elementary cell, we must allow for optical modes as well as acoustic ones. But it is 
important that until the interaction between the surface and the bulk is neglected, the 
difference between them is spurious, because it does not involve the existence of a gap 
that determines a physical optical mode. We shall see that for small enough ratio M/m, 
optical modes do appear. 

2. Symmetry of reconstructed surfaces 

As was mentioned, there is a relation between the symmetry of the bulk lattice and that 
of the surface one, which is seen most clearly with regard to displacements parallel to 
the surface. Wood (1964) and Fingerland (1972) indicated that the relation may be cast 
in the form of a requirement that the symmetry group of the surface lattice must be a 
sub-group of the bulk one. This statement may turn out to be useful for classification of 
possible surface crystalline structures, or phases. It is important that the symmetry of 
reconstruction in x ,  y ,  z space generates a symmetry in momentum space that establishes 
a relation between Brillouin zones of the surface and bulk lattices. We shall put forward 
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our arguments within the framework of the Montroll-Potts model and for the specific 
case of the reconstruction considered in this paper, but it is obvious that they are of quite 
general nature. 

Since we set the spatial scale equal to one, the Brillouin zone for the bulk lattice is 
given by the inequalities 

-nsq,s+n i =  1,2,3 

-in s k ,  s +&?G 

and for the surface it is two dimensional and given by 
i =  1,2.  

Let us consider the cross section B, of the bulk Brillouin zone given by the constraint 
q3 = 0; it corresponds to displacements parallel to the surface. This cross section has a 
special relationship with the surface Brillouin zone. To see this, let us notice that the 
wave numbers k, are determined up to summand in, so that if we have a value of k, 
outside the interval -n/2, +n/2 we may reduce it to the necessary size by subtracting 
or adding n the necessary number of times. Therefore, we obtain the same point of the 
surface Brillouin zone. But if we make the same subtractions or additions for a point in 
the bulk Brillouin zone, we obtain a set of transformations given by the following 
formulae: 

g , : q , + q i  + n  42 + 42 

g 2 :  41 -+ 41 42 -+ q2 + n ( 6 )  

g3:4 i+41 + n  42 + 42 + n 
and the wave number q3 remaining the same for all g,. The transformations given above 
act on the cross section B, and, together with the unit transformation go that leaves all 
the q1 in their places, form a group of the fourth order, i.e. consisting of four elements, 
which we shall denote R,. It is important that, if we identify all the points that are 
transformed into each other by transformations ( 6 ) ,  we obtain the Brillouin zone for the 
surface. 

3. Surface interaction with the bulk lattice 

The dynamics of the crystal with the reconstructed surface described above can be 
determined by the Lagrangian L.  It is straightforward to write an explicit form for L ,  
and we shall not do it. We aim at finding the effective Lagrangians of equation (4) and 
to that end we shall write L in the form 

L = L ,  + L h  + LI 
where L,, L,, LI are determined as follows. 

The Langrangian L, is given by purely surface terms of L and quadratic terms 
generated by the interaction, according to Hooke’s law, of surface atoms with those in 
the first layer of the bulk. It reads 

2 u  1 ( 7 )  L ,  = x (pi; - x - t 1 2 1 + x  

- X[)2 - a 3 x :  . 
m1,2=--z 1, = I 

Here xI are displacements of surface atoms from equilibrium positions I given by 
equations (5); T~ are force constants; p are vectors given by the equations 

cr3 is the bulk force constant in direction 2 .  Similarly, the bulk term 
I* = (-(-1K 190) p = 1,2.  (8) 

is given by bulk 
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terms of L and a quadratic term related to the interaction between the bulk and the 
surface: 

Here xj are displacements of atoms in the bulk from their equilibrium positions; oj, i = 
1 , 2 , 3  are force constants; i are vectors given by the equations 

i = ( a i l ,  ai29 Si3). 

The part L, is assembled from terms of L that are not incorporated in either L, or 
Lb. It has the meaning of an interaction between the surface and the bulk: 

+ x  

L I  = 03 2 aj3,1xj’x,* 
1 1 . 2 = - 5  

Here 1 are given by equations compatible with those of ( 5 ) :  

Following Feynman (1972) we shall impose the periodicity constraints in complex 
time on the displacements 

xj( t )  = xj(t + iph). 

So far we have made no requirements concerning boundary conditions on the crystal’s 
faces. The conventional constraint-periodic boundary conditions-is not appropriate 
in the situation of reconstructed surface. We may assume the free boundary condition 
at the reconstructed surface, and set the fixed boundary condition (FBC) at other faces 
of the crystal, which we may visualize as a large cube. Then, as can be inferred from the 
theorem by Ledermann (1944) (see also Maradudin et a1 1963, ch II), for a sufficiently 
large crystal size, the change in density of states (eigenvalues) for either bulk modes, or 
surface modes of the reconstructed surface, due to the imposition of FBC, is negligible. 

Having accepted the FBC, we might use expansions of the displacements in functions 
that are equal to zero at the boundaries (for example, sin x ) .  But again in the situation 
of the reconstructed surface this procedure would lead to awkward formulae. We feel 
that the best approach is to take the cube large enough so that we may perform all 
expansions as if it occupied half space. Then we may work with the Dirac &functions, 
which turn out to be very helpful in calculations that involve wavevectors from two 
different Brillouin zones, the surface and the bulk one. 

To obtain the factorization formula (1) we need a transformation that splits up the 
surface and the bulk dynamical variables, and results in formula (4) for the effective 
Lagrangians. Since our Lagrangian is quadratic, we may use the path integration tech- 
nique of Popov (1976) and Kleinert (1978). 

Let us consider the transformation 
x j - )  xj + ‘7 j  

here qj are functions at lattice sites, and we assume that they are equal to zero at sites 
of the reconstructed surface 

so that displacements xj of atoms at the surface are not affected by the transformation. 
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Substituting transformed xj in the Lagrangian and requiring that terms linear in xj with 
j3 = 1 be equal to zero, we get the equation: 

3 

A 1 9.' J 9. J + I  , - 29j  + 9 j - i .  

Here 1 are given by equations (11). The Langrangian finally takes on the form (4), in 
which the effective Lagrangian LEff reads: 

Here L, is the initial surface Lagrangian given by (7). The last term in equation (14) 
accommodates the influence of the bulk on the surface. 

To get an explicit form for LE" we may employ the Green function of equation (13) 
with zero boundary values at the surface sites, owing to the constraint given by equation 
(12). Here it should be noticed that the constraint is very important in that it enables us 
to solve equation (13) in half space, instead of using a sophisticated mesh involved with 
the reconstructed surface. 

To obtain an explicit form for the Green function we use the Fourier transform in 
complex time defined by 

and the Fourier transform in the lattice 

Using the Fourier transforms indicated above we may cast the Green function in the 
following form: 

It should be taken into account that the Green function equals zero at the surface 
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Using the Green function indicated above we cast the solution qj to equation (13) 
with the boundary condition (12) in the form. 

+= 

vj = 01 C, ~ ( m n , j , . i ~ )  f i ] ~ , l x ~ ~ ~ n ~ *  
&.3=  - x  

Here I are given by equations (11). On substituting the equation given above in equation 
(13), we obtain the explicit form for Liff. Using similar arguments we get LEff and, 
finally, equation (4). 

4. Canonical partition function 

Thermodynamic functions of a system can be derived from its canonical partition 
function; for the reconstructed surface considered in this paper, that means from .Ztff. 
To obtain an expression for Zgff we may use its definition by means of the path integral, 
which reads: 

Following Feynman (1972) who applied path integrals to the polaron problem, we shall 
evaluate equation (16) by using a Fourier transform of the action in the exponent. The 
point is that we need such a transform that allows for the geometry of the reconstructed 
surface and reduces evaluations of the path integral to calculating infinite products. 

Let us notice that the coordinates of equilibrium sites of the surface can be cast in 
the form 

11 = 1 + 2 p + p  1 2  = 2q + ,U I ,  = 0 

p = 0 , 1  p ,  q = 0, k l ,  1 2  (17) 

compatible with those given by ( 5 ) .  In what follows we shall neglect the third, zero, 
coordinate. The Fourier transform we need reads: 

where I = ( I , ,  1 2 ) ; p ,  q are determined by equation (17) and p = 0 , l .  The wave numbers 
k l ,  k 2  take values in the Brillouin zone of the surface: 

s k l ,  k2 s +In. 

A is the area of the reconstructed surface. 
The reasons for putting the factor l/vx into equation (18) are twofold. Firstly, we 

need to cast our formulae in such a shape that the dependence of thermodynamic 
functions on area is explicit. Secondly, the series inp ,  q ,  generally, does not converge, 
and we should understand it in the sense of the theory of generalized functions. But, as 
was stated earlier, the crystal is assumed to occupy a very large cube, so that the surface 
we consider is a very large square, and series like that in equation (18) are sums with 
very large limits of summation. Therefore, the factor l/vx in the right-hand side has 
the meaning of the regularization constant for, generally, a very large sum. 
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After some computations using the Fourier transfsrm in time (15) and in lattice (18), 
we cast the effective action in the form 

where W; is the two-vector 

w; = ( w 4 9  Ui(O8,)) 

and w,, are the Matsubara frequencies U,, = 2nn/( -i/3h). The operator 0; has the matrix 
form 

The operators P; and Q; are given by the equations 

P;: = -MU; + 203 + 2 ( t ]  + t2) + 0:z, 
Q; = 221 cos(kl + k2) + 2x2 cos(kl - k2) - u ~ Z B .  

(21) 

(22) 

The functions I * ,  I ,  will be specified below (see equations (26), (27)). It should be 
noticed that, since the displacements xi are real, we have the constraint 

I%; = w:;. (23) 

While performing the Fourier transform of the second term in equation (14), we face 
two different periodicities: that of the surface, equal to two, and of the bulk, equal to 
one. The latter appeared owing to the Green function we used to solve equation (13). 
These two different periodicities result in different sizes of the Brillouin zones for surface 
and bulk (see Section 2) and, quantitatively, generate the symmetry group Rc of the 
reconstruction. In deriving the off-diagonal terms in equation (14) we have used the 
formula 

+ X  + x  

2 eimx = 2n b(x - 27". 

We may cast the formula for ZEff in the form 

m - x  m = - x  

Here we have changed the integration in k for the summation using the general pre- 
scription 

-12 d k ,  d k 2  
E = A l  - 

n2 ' k -nj2 

The factor i/3h in the right-hand side of equation (19) is taken into account in the 
functional integration measure of the equation given above. Employing the technique 
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of functional integration (see Kleinert 1978) and taking into account constraint (23), we 
may cast Z:" in the form 

/ 

The normalizing constant J does not depend on dynamical characteristics of the system, 
i.e. masses and force constants. From the equation given above we infer that the energy 
reads 

with the functions X ,  given by 

X- = 4 t  sin2[(kl + k2)/2] + 4~~ sin2[(kl - k2)/2] + 20, + U;(I* +I , )  

X+ = 421 cos2[(k, + k2)/2] + 4t2 cos2[(k, - k2)/2] + 2 ~ 3  + U ; ( I A  - I ,) .  

The functions I*, I, are defined as follows. Consider the basic integral 

sin2 x 
I = I-+; 2 2 n  wim - 4E:= O; sin' hki - 4u3 sin2 ix' (25) 

If we have a functionf(k,, k 2 )  of the coordinates k , ,  k 2 ,  the group Rc (see Section 2) acts 
on it: 

Y(k1 3 k2)  =fW1 * '9%). 

Here g is an element of Rc. Using these notations we may write the function I ,  in the 
form 

of the transforms of integral (25) under the action of elements of Rc. Similarly, we may 
write I ,  in the form 

Here x(g) is the character of the group Rc, i.e. the function valued in the set -1, +l, 
for which we have 

In what follows we shall also need the analytical continuation for the right-hand side 
of (24) and functions I,, I,. Explicit expressions for them can be obtained using the 
integral 

r z+vzxz<-- l  
z - i ~ 5 F T , - l < z < + 1  

z - m, 1 < 2. 

+ = d x  s in2x 
2Jdz + cosx 

J(z) = 

To find the analytical continuation given above we take the function determined by the 
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Figure 3. Integration contour in equation (29). 

first line in (28) for z real and less than - 1, and perform the analytical continuation in 
the z plane in such a way that the function obtained by it is equal to the second line of 
(28) at the upper side of the cut -1 S z < + 1. In the same way we obtain the analytical 
continuation for the functions IA, IB as well, but it should be noticed that cuts required 
for their analytical continuation are different from that indicated above and depend on 
values of functions generated by the first two terms in the denominator of the integrand 
in equation (25). The point is that IA, I, are constructed from integral (25) with the 
action of Rc, and therefore are sums of integrals that have the form of integral (28). 

Having performed the analytical continuation, we are in a position to use the Som- 
merfeld-Watson transformation and to cast equation (24) in the form of the contour 
integral. But firstly it should be noticed that the term with In J in equation (24) is to be 
cancelled out. To see this let us recall that J does not depend on material constants of 
the system, so that we may evaluate it by setting all bulk characteristics equal to zero. 
Then the energy E, is that of 2D lattice and the term with In J equal to zero. Finally, we 
may write the energy of the reconstructed surface in the following form. with the contour 
C illustrated in figure 3: 

Concluding this section we would like to point out that the generation of terms in the 
expression for energy by the action of the symmetry group Rc, and the analytical 
continuation of basic functions, are the mathematical framework for our study of the 
thermodynamics of reconstruction. 

5. Phonon modes at the reconstructed surface 

The key point in studying the phonon modes is that the operators D;i defined by equation 
(20) are Fourier transformed equations of motion for surface displacements. Therefore, 
by setting the determinant of the operator equal to zero 
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det D ;  = 0 (30) 

and performing the analytical continuation from the Matsubara frequencies to con- 
tinuous z ,  we obtain the equations for surface modes. 

For the first time functional determinants were employed for studying elementary 
excitations in condensed media by Popov (1976), see also Jarunin and Popov (1980). 

The equations for the surface modes read as follows: 

z’ - U: = (m/M)[z’ - cos’ dk,S2& - sin’ Ik,R:, 

+ COS* +k,V‘(z2 - Q& - v2)* - v 4  

+ sin2 i k , v ( z 2  - S2’ - v 2 ) *  - v41 

2’ - ~ f , , ~  = (m/M)[z’ - cos2 dk,Sr;, - sin’ d k l Q f o  

+ COS* dklV(z’  - Qi1 - v’)’ - v 4  

+ sin’ t k , v ( z ’  - a:, - v’)’ - v‘]. 
Here we have used the following notations: 

of = 4 ( t , / M )  sin’ dk, + 4 ( t 2 / M )  sin’ i k 2  

of,,p = 4 ( t , / M )  COS’ dk, + 4 ( t 2 / M )  COS’ $k2 

for the acoustic of and the spurious ufop optical phonon mode at the surface, and: 

sZ& = 4(01/m)  sin’ dk, + 4(a2/m) sin’ 4k2 

Q:, = 4(01/m)  cos’ dk, + 4(o,/m) cos’ ik’ 
S26,  = 4(a , /m)  sin’ dk, + 4(02/m) cos’ dk’ 

S2$ = 4(a , /m)  cos’ 4kl + 4(02/m) sin’ 2k2 

for the bulk frequencies considered in the small Brillouin zone of the surface, and in this 
respect v = 203/m is the bulk frequency for the wavevector ( 0 ,  0, +n/2) .  Equation (31) 
is a kind of extension of the equation for surface acoustic modes allowing for the influence 
of the bulk represented by the terms in the right-hand side, and equation (32) is a similar 
one for the optical surface mode. It should be noticed that the latter is spurious without 
the influence of the bulk. 

The essential point is that the frequencies given above are transformed into each 
other by the action of the group Rc. Consequently, equations (31) and (32), which give 
the two branches of phonon modes at the surface, are transformed into each other by 
the group Rc. To make the point more clear, let us write equation (31) in the following 
form: 

z’ - U ;  - (m/M)Y(z ,  k , ,  k , )  = 0. (33) 

Here Y ( z ,  k , ,  k , )  is the right-hand side of (31). Then equation (32) can be cast in the 
form 

here g = g, ,  g, are elements of Rc, defined by equations (6) 
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In the equations given above the square roots are to be understood in the sense of 
the analytical continuation introduced earlier. We should take into account that these 
equations also have complex solutions that correspond to resonant modes lying inside 
the band of bulk modes. 

Here it should be recalled that Dobrzynski and Mills (1969) studied surface phonon 
modes for the non-reconstructed (001) surface of a simple cubic lattice formed by 
adatoms of mass M different from mass m in thcbulk. They found that there is only one 
branch of surface modes which, depending on the mass ratio m/M, can be acoustic, 
resonant (i.e. lying within the band of bulk modes) or optical (i.e. with a gap). In their 
subsequent paper Dobrzynski and Mills (1973) studied optical phonon modes at the 
(2 X 1) reconstructed surface, and found that among these modes those lying low enough 
may penetrate the band of bulk acoustic modes. The phenomenon is due to the fact that 
the Brillouin zone of the reconstructed surface is two times smaller than that of the non- 
reconstructed one, so that a surface optical mode with a wavevector k may mix with the 
bulk one displaced in the direction of k by an appropriate vector of the reciprocal lattice. 
Our results agree with the conclusions of Dobrzynski and Mills in that the analysis of 
equations (31) and (32) shows that there are optical modes caused by the reconstruction 
which can mix with the bulk ones, and acoustic modes become optical when the ratio 
m/M is large enough. In fact, the gap tends to v (4a3 /m)  as m/M goes to infinity. 

6. Surface energy 

Using equation (29) we may reduce the computation of the surface energy to evaluating 
the following integral: 

The function F(k, ,  k2) is a sum of residues of the integrand in the contour integral of 
equation (29), and integrals of the imaginary part of the integrand along the cuts made 
in the process of the analytical continuation for the functions I*,  I , .  

Following the guidelines provided by the dispersion equations (31) and (32), we may 
cast the equation for the energy in a more explicit form. To that end let us note that the 
two summands under the integral in (29) can be obtained from each other by the action 
of the group Rc. Therefore, we may cast the equation for E, in the following very 
symmetric form: 

with the functionf(2) given by 

x+ + (z/2)dX,/dz 
M z 2  - X+ f(z) = 

It is worth noticing that the summation in elements of Rc is in fact an integration over 
this group, so that we may infer that the expression for the surface energy involves the 
integration over the group of symmetry of the reconstructed surface. 

To see the structure of equation (35) for the surface energy more clearly let us 
consider the reconstructed surface formed by heavy adatoms, m/M < 1. Then, as can 
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be inferred from equations (31) and (32), there are no resonant modes which correspond 
to complex poles of the functions "(2). It is also important that the function X + ( z )  
depends on z 2 ,  as is seen from equation (25), which determines it. Therefore, for 
m/M < 1 we may assume that poles ofgf(z) lie on the real axis symmetrically with respect 
to the origin, and there is the equation for the two poles w, -w: 

[Res gf(z>l(z=w) = -[Res gf(~>l(z=-w)' 
The cuts made above for the analytical continuation are also symmetrical. Consequently, 
by deforming the contour Cas  shown in figure 3, and using the equation for the residues 
at z = w ,  -w, given above, we may split E, into two parts: 

E ,  = E,, + E,. 

The first term, Ezp, does not depend on temperature and is the zero point energy: 

The second term is temperature-dependent: 

Here w are positive poles of the functions "(2) .  

formula for specific heat by employing expansions in m/M: 
The region of low temperatures is worth special attention. Here we may obtain the 

C = C 2 D  + (m/M)c,,. 

Here the first term is the same as for the 2D lattice with the dispersion law given by w,(k), 
the second term, of first order in m/M, corresponds to corrections due to the interaction 
between the surface and the bulk. The T 2  law for the specific heat described by the 
formula given above is preserved. The explicit form of the term c,h is rather difficult and 
we shall not give it here. 

For sufficiently large m/M, i.e. strong interaction between the surface and the bulk, 
we shall have only optical modes and the specific heat changing according to the Einstein 
law, in the region of high temperatures. 

7. Conclusions 

The path integral formulation of lattice dynamics provides the systematic approach for 
taking into account the influence of the bulk lattice on thermodynamic properties of the 
surface. We feel that non-equilibrium phenomena at the surface could also be treated 
within the framework of path integrals by using the method of complex-time path 
integrals worked out by Jensen and Sauls (1986,1988) for the polaron problem. Par- 
ticular properties of the model, especially those related to the symmetry of lattice 
involved, are not crucial; we may consider the interaction not only between nearest 
neighbours, change the type of reconstruction, and so on. The more important point is 
the harmonic approximation, because to break its bondage we need to use perturbation 
theory. 



9038 V L Golo 

Expansions of thermodynamic properties of the surface in terms of the ratio m / M  
are very important. For example, let us consider the Peierls instability, according 
to which at any finite temperature there cannot exist a 2D crystalline lattice because 
thermodynamical fluctuations in positions of atoms, (x’), would increase as the logarithm 
of the size of a lattice. In real life, the 2D lattices have been prepared so far on substrates, 
so that there is an interaction, though small, between the surface and the bulk systems. 
To evaluate the fluctuations (x’) we may employ the surface Green function which can 
be derived from the canonical partition function given by equation (23). The surface 
Green function can be cast in the following matrix form: 

D = Z’ - - X - ( Z )  Z’ - 
i M  i !  M 

The fluctuations (x’) are proportional to the imaginary part of the Green function in 
the x representation (see Lifshitz and Pitaevskii 1980), and for the 2~ lattice they tend 
to grow as In R ,  where R is the size of the system, owing to the b-shaped singularities of 
the Green function. In our case there are no such b-shaped singularities, because G,(z) 
has a finite imaginary part due to imaginary parts of ZA, I , ,  caused by equation (28). It 
is easy to convince oneself that the peak of G,(z) has a width of order m / M .  

We feel that the specific form of the energy of zero-point vibrations of the surface 
should draw attention to surface effects in general and the reconstruction in particular. 
To clarify this, let us consider the energy of zero-point vibrations for the specific case of 
small m / M ,  i.e. when we have a weak surface bulk interaction. We have the following 
expansion in m / M :  

+d2 d k l  d k 2  m 
M 

hw,(k) + - E ,  + 0 E Z p  = A  

The first term in the equation given above is the energy of zero-point vibrations of the 
surface 2~ lattice without taking into account its interaction with the bulk lattice; the 
second term, of first order in m / M ,  accommodates the influence of the bulk on the 
surface; the third designates higher orders in m / M .  The explicit form of the second term 
is rather lengthy and we shall not write it here, particularly as it is straightforward. Its 
nature is sufficiently clear from equation (36); it is the part of the energy of zero-point 
vibrations due to the spatial configuration of the lattice’s sites at the topmost layers and 
the influence of the bulk, i.e. its origin lies in the interplay between the zero-point 
vibrations at the surface and the topology of bonds that hold together the surface and 
the bulk, and in that it resembles the Casimir energy. 

The current concept of the Casimir effect (Casimir 1948) is that it is the polarization 
of a vacuum caused by either the finite size of a spatial region containing a quantized 
field, or the topology of space different from the Euclidean one. The familiar example 
of the effect is the electromagnetic field confined between two metallic planes which 
experience therefore an attractive force due to a change in the energy of the vacuum, or 
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zero-point vibrations of the field. Ginzburg (1981) drew attention to the fact that surface 
vibrations of the field are essential for adequate treatment of the Casimir effect. 

Generally forces due to the Casimir effect are rather weak, even though in some 
realistic situations, for example Van der Waals forces (see Barash 1988), they can be 
important. The part played by zero-point vibrations in the stability of solids in the case 
of melting, i.e. in the situations where geometric characteristics required for effecting it 
are reduced to the simplest one-the volume-was studied a long time ago by Bennewitz 
and Simon (1927) who indicated that for inert gases it can be of interest. Later Simon 
(1934) showed that the energy of zero-point motion plays a crucial role for liquid helium 
for which it cannot be treated as a small correction. The large values of the energy of 
zero-point motion result in helium only solidifying under considerable external pressure, 
even at very low temperatures. The two ground states of helium. solid and liquid, 
are determined by minimizing the total energy which comprises the part caused by 
intermolecular forces, i.e. the classical potential energy, and the part due to zero-point 
motion (see the discussion by London 1954). Drawing parallels with the Casimir effect, 
we may say that the quantized field corresponds to the motion of helium atoms and the 
imposed restrictions on size to the fixed volume of liquid. It is also worth noticing that 
the mole volume of liquid helium is considerably larger than one would expect from 
estimating only the potential energy, because by expanding to a larger volume the liquid 
lowers its zero-point energy far more than it increases its potential energy. 

According to the experimental results of Elgin and Goodstein (1973), the energy of 
zero-point motion of helium atoms in films on a graphite substrate is large compared to 
the barrier height between potential adsorption sites on the substrate, even though for 
a sufficiently dense coverage the substrate potential is able to impose upon a helium 
monolayer an ordered state of a 2~ crystalline lattice commensurate with itself. Also for 
Xe monolayers De Wette (1985) reports that in-plane vibrations can be considered as 
2~ motions in that they appear to be independent of the substrate’s motion, but it should 
be noticed that for transversal vibrations there is a strong interaction with the substrate. 

On the grounds of the experimental results cited above we suggest that the Casimir 
effect could be an interesting phenomenon in the physics of surfaces. From the theor- 
etical point of view, the surface even in simplest model configurations has enough 
topological structure for the lattice’s vacuum to change drastically at its vicinity. There- 
fore, the lattice’s energy of zero-point motion could lead to interesting implications for 
the phenomenon of reconstruction, at least for low temperatures and inert gases. 
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